

- - 1 - -

OWASP API
security top 10
explained

Table of Contents

Executive Summary 2

API1:2019 Broken Object Level Authorization 2

API2:2019 Broken User Authentication 4

API3:2019 Excessive Data Exposure 8

API4:2019 Lack of Resources & Rate Limiting 10

API5:2019 Broken Function Level Authorization 12

API6:2019 Mass Assignment 15

API7:2019 Security Misconfiguration 17

API8:2019 Injection 20

API9:2019 Improper Assets Management 22

API10:2019 Insufficient Logging & Monitoring 25

Conclusion: Protecting APIs from the
OWASP API Security Top 10 Threats 26

- 2 -

Executive Summary
APIs have evolved significantly since their early days when just a few companies used them to address
a limited set of needs. Their use has exploded in the past couple years, since APIs are critical to digital
transformation and automation efforts. Application environments of all types rely on them, as do
businesses across all industries and size, for a broad set of use cases.

Given that APIs are expressly used to connect critical services and data, hackers have honed in on
APIs as a primary attack vector. High-profile breaches and “leaky APIs” have plagued companies from
Peloton and Experian to Facebook and Panera. Gartner predicts that “By 2022, API abuses will move
from an infrequent to the most-frequent attack vector, resulting in data breaches for enterprise web
applications.”

Seeing the increase in API-related security incidents and breaches, the Open Web Application
Security Project (OWASP) released the API Security Top 10 to raise awareness about the most
common API security threats organizations need to guard against.

This paper provides a detailed review of each threat outlined in the OWASP API Security Top 10,
including examples and insight to help you understand how to protect your organization from the
threats targeting APIs and API-based applications.

API1:2019 Broken Object Level Authorization
Description
APIs often expose endpoints that handle object identifiers, creating a wide potential attack surface.
Object level authorization is an access control mechanism usually implemented at the code level to
validate a user’s ability to access a given object. Authorization and access control mechanisms in
modern applications are complex and wide-spread. Even if an application implements a proper
infrastructure for authorization checks, developers often forget to apply these checks before
accessing an object.

Attackers can easily exploit API endpoints that are vulnerable to broken object level authorization
(BOLA) by manipulating the ID of an object that is sent within an API request. These vulnerabilities are
extremely common in API-based applications because the server component usually does not fully
track the client’s state. Instead, the server component usually relies on parameters like object IDs sent
from the client, to decide which objects can be accessed.

Any access of unauthorized data is severe, regardless of its data classification or data sensitivity. These
types of authorization flaws are also not easily detectable with automated static or dynamic testing.

Every API endpoint that receives an ID of an object, and performs any type of action on the object,
should implement object level authorization checks. These checks should be made continuously
throughout a given session to validate that the logged-in user has access to perform the requested
action on a requested object.

- 3 -

Potential Impact
Failure to enforce authorization at the object level or broken improper object level authorization can
lead to data exfiltration as well as unauthorized viewing, modification, or destruction of data. BOLA
can also lead to full account takeover such as in cases where an attacker can compromise a password
reset flow and reset credentials of an account they aren’t authorized to.

Example

In this example, the backend logic of the application queries the database with the userId in the
query parameter while verifying the authorization with the userId in the cookie. Under normal
conditions these two values should match, however, an attacker could simply modify the userId value
in the query parameter in order to access unauthorized data.

The attacker (John Smith) is logged in with userId 207939055. When the attacker changes the userId
in the query parameter to userId 207938044 the application does not validate that the userId of the
authenticated user matches that of the record being requested in the query parameter or whether the
authenticated user is authorized to view that given record. As a result, the database backend returns
the record for David Miller as opposed to John Smith.

If the userIds are sequential the attacker can simply enumerate the query parameter userId value to
scrape, or exfiltrate, large amounts of data, particularly if rate limits aren’t enforced.

- 4 -

Real World Example
How I could have hacked your Uber account
In 2019 a security researcher disclosed a BOLA vulnerability that would have enabled an attacker to
take over any user account on Uber. By exploiting the vulnerability, the attacker could access another
user’s account to track the target user’s location, take rides, and more. The attacker could also exploit
the BOLA vulnerability to harvest Uber mobile app access tokens, and then use those access tokens
to take over Uber Driver and Uber Eats accounts. The Uber application userId could be easily
enumerated by supplying a user’s phone number or email address in another API request.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways miss these types of attacks because they
don’t understand API context and don’t baseline normal API usage. In this case, these tools do not
know that the userId in the query parameter and the userId in the cookie should match. Also consider
that since this is not a known, predictable attack pattern like a code injection where basic pattern
matching and message filtering can be employed, it won’t be identified by the signatures used by a
WAF or API gateway.

How to Protect Against BOLA Attacks
In order to prevent BOLA attacks an API security solution must be able to learn the business logic
of an API and detect when one authenticated user is trying to gain unauthorized access to another
user’s data. In this particular case, two objects should match and that the authenticated user is
authorized to access the requested object. This kind of detection requires the analysis of large
amounts of API traffic in order to gain context and understand the normal usage for each API. A
solution with a baseline of normal usage can identify abnormal behavior like an attacker
manipulating the userId in a query parameter in GET requests, or a userId variable within a
message body of POST requests.

API2:2019 Broken User Authentication
Description
Authentication in APIs is a complex and confusing topic. Software and security engineers might have
misconceptions about what the boundaries of authentication are and how to correctly implement it.
Prompting users or machines for credentials and additional authentication factors may also not be
possible in direct API communication. In addition, authentication mechanisms are easy targets for
attackers, particularly if the authentication mechanisms are fully exposed or public. These two points
make the authentication component potentially vulnerable to many exploits. Advanced attacks that
target authentication include brute-forcing (of authentication), credential stuffing and credential
cracking.

- 5 -

Authentication in APIs has two sub-issues:

1. Lack of protection mechanisms - API endpoints that are responsible for authentication
must be treated differently from regular endpoints and implement extra layers of
protection.

2. Misimplementation of the mechanism - The mechanism is used or implemented
without considering the attack vectors, or the mechanism is not appropriate for the
use case. As an example, an authentication mechanism designed for IoT devices is
typically not the right choice for a web application like an eCommerce site.

Technical factors leading to broken authentication in APIs are numerous and include:

• Weak password complexity

• Short or missing password history

• Excessively high or missing account lockout thresholds

• Failure to provision unique certificates per device in certificate-based authentication

• Excessively long durations for password and certificate rotations

• Authentication material exposed in URLs and GET requests

• Authentication tokens with insufficient entropy

• Use of API keys as the only authentication material

• Failure to validate authenticity of authentication material

• Insecure JSON Web token (JWT) configuration such as use of weak digital signature
algorithm or missing signatures

• Use of small key sizes in encryption or hashing algorithms

• Use of weak or broken ciphers

• Use of algorithms that are inappropriate for the use case, such as use of hashing
algorithms rather than password-based key derivation functions (PBKDF).

• Failure to step-up authentication if authentication flows are being targeted, such as
dynamically challenging with CAPTCHA or second factor authentication (2FA) material.

- 6 -

Potential Impact

An attacker who is able to successfully exploit vulnerabilities in authentication mechanisms can take
over user accounts, gain unauthorized access to another user’s data, or make unauthorized
transactions as another user. Similarly, APIs may be designed explicitly for machine communication,
or direct API communication. An attacker who compromises that authentication mechanism or
authenticated session can potentially gain access to all of the data that machine identity is entitled to
access. There are also variants of this type of attack in cloud-native design with compromises of
workload authentication and server-side API metadata services.

Example

Common examples of attacks targeting broken user authentication include API enumeration and
brute-forcing attacks that make high volumes of API requests with minor changes. These attacks may
also target broken or weak authentication.

As an example, password recovery mechanisms often send an SMS to a user’s phone with a reset
token consisting of a series of numbers. An attacker can initiate a password reset, and if the API does
not implement rate limiting, the attacker can enumerate (or “guess”) the password reset token until
they get a successful response. Depending on the throughput of the target API endpoint, an attacker
may be able to iterate through thousands or millions of different combinations within a few minutes.

- 7 -

Real World Example
Unpacking the Parler Data Breach
In 2021, Salt analysis of the Parler data breach and the general consensus of media outlets and
hacktivists found that Parler’s authentication was at least partially absent. This flaw, along with
other security flaws in the Parler platform, enabled the scraping of at least 70TB of data. Based on
what the hacktivist shared publicly, at least one endpoint was available without authentication
which provided access to user data without requiring authentication. In Parler’s case, these APIs
likely were not intended to be anonymous, public APIs. The APIs allowed direct access to Parler
user profile information and user content, including message posts, images, and videos. It is
unlikely that Parler would have intended or configured these APIs and pages to be accessible
without authentication.

Some reports indicated there was a security misconfiguration as a result of Twilio integration that
was later decommissioned. Allegedly, some of the archivists used this to bypass multifactor (MFA)
authentication during account creation and extract data. The issue was later disputed by the
hacktivist, and Twilio representatives have also stated it was false. An MFA misconfiguration would
further fuel the debate whether the Parler data was truly public and Parler APIs were lacking
authentication.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs don’t typically enforce authentication at a granular level
and may only verify presence of a session identifier or authentication token in a given request. API
gateways may enforce authentication as part of API management access control policies, but that
presumes owning teams have defined policy appropriately. There is often an operational
breakdown between teams creating APIs, teams publishing APIs, and teams securing APIs. Even
still, API gateways lack understanding of what authentication is proper for an API in a given use
case. Traditional security controls also lack capabilities to track attack traffic over time, which is
necessary to decipher the different forms of advanced attacks targeting authentication such as
credential stuffing and credential cracking. They will often rely on excessive API consumption rates
to identify basic brute-force attack attempts.

How to Protect Against Broken User Authentication Attacks
In order to protect against broken user authentication attacks, an API security solution must be
able to profile the typical authentication sequence for every API flow. The solution can then detect
abnormal behavior such as missing credentials, missing authentication factors, or authentication
calls that are out of sequence. Determining the baseline and identifying abnormal behavior can
only be done by analyzing large amounts of production API traffic. This form of analysis is critical
for mitigating advanced attacks that target authentication such as credential stuffing and
credential cracking.

- 8 -

API3:2019 Excessive Data Exposure

Description
Exploitation of Excessive Data Exposure is simple, and is usually performed by sniffing the traffic to
analyze the API responses, looking for sensitive data exposure that should not be returned to the
user.

APIs rely on clients to perform the data filtering. Since APIs are used as data sources, sometimes
developers try to implement them in a generic way without thinking about the sensitivity of the
exposed data. Traditional security scanning and runtime detection tools will sometimes alert on
this type of vulnerability, but they can’t differentiate between legitimate data returned from the API
and sensitive data that should not be returned. This requires a deep understanding of the
application design and API context.

Potential Impact
APIs often send more information than is needed in an API response and leave it up to the client
application to filter the data and render a view for the user. An attacker can sniff the traffic sent to
the client to gain access to potentially sensitive data that can include information such as account
numbers, email addresses, phone numbers, and access tokens.

Example

- 9 -

In the example, the client-side code running in the user’s web browser is submitting a POST request
to a backend API to retrieve stored payment information. In this case, the API is retrieving stored
credit card information, specifically primary account number (PAN) and card verification value
(CVV) code. Within the world of credit card handling and payment processing, this type of data is
deemed to be sensitive as part of PCI-DSS and must be protected appropriately. The scope of what is
necessary for protection varies depending on exposure of the cardholder data environment, or where
the data is stored, processed, or transmitted.

This sensitive data sharing may be intentional as part of the design or necessary for functionality. As a
result, organizations augment with additional security controls such as stronger authentication or
encrypted transport to ensure the data is sufficiently protected. In the example, you can see
additional HTTP security headers to help protect the data, such as x-frame-options for mitigating
cross-frame scripting attacks and x-xss-protection for mitigating cross-site scripting attacks. Some
organizations may also mask data being returned to a client to avoid cases where someone intercepts
traffic or views data outside of the intended client application. Relying on the client-side code to filter
or obscure such sensitive data is typically not appropriate since attackers regularly bypass client-side
web application and mobile application code and call APIs directly.

Real World Example
Flaw left user data of 2 million Bounceshare customers vulnerable to hack
In 2019 a security researcher found that by passing a phone number in an API request the
Bounceshare application would return an access token and RiderId associated with the account for
that phone number. An attacker could automate this process by using a phone number dump found
online and a script allowing them to gain unauthorized access to multiple user accounts. Once
logged in to a target user’s Bounceshare account the attacker would have access to sensitive
information such as their driver’s license, email address, and photos. If the target user had linked their
Paytm account for payments, the attacker could also see the user's balance and book rides from the
target user's account.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways have no context to identify sensitive data
being sent over an API and therefore do not understand the exposure risk of the data being sent.
Typically, they will employ basic pattern matching and message filtering to identify sensitive data
types, also referred to as regular expression (regex) patterns. While these types of filters can catch
well-defined sensitive data types such as PANs or social security numbers (SSNs), they do not
understand API context and business logic flows. They will flag any data that matches the pattern,
regardless of whether it is necessary to block the request, encrypt payloads or obscure data. API
gateways are often used to mediate API calls that contain sensitive data, and this may be necessary as
part of an overarching enterprise architecture, application design or systems integration. Blocking or
masking sensitive data wholesale often breaks functionality as a result leaving security teams reluctant
to aggressively use these capabilities in proxies in favor of relying on the API/application layer to
control exposure.

- 10 -

How to Protect Against Excessive Data Exposure
An API security solution must be able to identify and report on the large variety of sensitive data types
that can be sent in API requests and responses. These solutions must also have the ability to baseline
and track API access per endpoint and per user in order to identify excessive consumption of
sensitive data. These solutions must also provide API context and a range of response actions so that
not every transmission of sensitive data results in an alert or blocked request.

API4:2019 Lack of Resources & Rate Limiting
Description
API requests consume resources such as network, CPU, memory, and storage. The amount of
resources required to satisfy a request greatly depends on the input from the user and the business
logic of the endpoint. APIs do not always impose restrictions on the size or number of resources that
can be requested by the client or user. Not only can this impact the API server performance, leading
to Denial of Service (DoS), but it also leaves the door open to brute-forcing and enumeration attacks
against APIs that provide authentication and data fetching functionality. This includes automated
threats like credential cracking and token cracking among others.

Potential Impact
When determining impact, it is best to break down the impact of this issue into two sub-components:

1. With respect to lack of resource limiting, an attacker can craft a single API call that can
overwhelm an application, impacting the application’s performance and responsiveness or
causing it to become unresponsive. This type of attack is sometimes referred to as an
application-level DoS. These types of attacks not only impact availability though. They may
also expose the system, application or API to authentication attacks and excessive data
leakage.

2. With respect to lack of rate limiting, an attacker may craft and submit high volumes of API
requests to overwhelm system resources, brute force login credentials, quickly enumerate
through large data sets, or exfiltrate large amounts of data.

- 11 -

Example

In the example above of a lack of resource limit, the attacker has increased
the max_return and page_size values for the search filter from 250 to 20,000. This increase would
cause the application to return an excessive number of items in response to a query. It could also
cause the application to slow down or become unresponsive for all users.

Real World Example
Checkmarx Research: SoundCloud API Security Advisory
In 2020 the Checkmarx research team found that SoundCloud had not properly implemented rate
limiting for the /tracks endpoint of the api-v2.soundcloud.com API. Since no validation was
performed for the number of track IDs in the ids list, an attacker could manipulate the list to retrieve
an arbitrary number of tracks in a single request and overwhelm the server. Under normal conditions
the request issued by the SoundCloud WebApp includes 16 track IDs in the ids query string
parameter. The researcher was able to manipulate the list to retrieve up to 689 tracks in a single
request causing the service response time to increase by almost 9x. According to Checkmarx “This
vulnerability could be used to execute a Distributed Denial of Service (DDoS) attack by using a
specially crafted list of track IDs to maximize the response size, and issuing requests from several
sources at the same time to deplete resources in the application layer will make the target’s system
services unavailable.”

- 12 -

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs, API gateways, and other proxying mechanisms will
commonly offer basic or static rate limiting which are difficult to enforce at scale. Security teams
may not know enough about the application design to know what “normal” looks like in order to
enforce limits to thwart attackers while not impacting business functionality. WAFs and API
gateways lack the context required to inform security teams on what a normal value should be
for an API parameter, and they will miss attacks where an attacker manipulates a single API
parameter value to overwhelm the application. These proxies may also only cover ingress, or
inbound requests, as opposed to egress traffic, or outbound requests and responses.

How to Protect Against Lack of Resources & Rate Limiting Attacks
An API security solution must be able to identify calls to API endpoints and alterations to API
parameter values that fall outside of normal usage. This would be done by analyzing all API
traffic in order to create a baseline of typical behavior and identifying deviations that fall outside
of that baseline.

In the example above an API security solution will have created a baseline of values for
the max_return and page_size parameters and will identify that a value of 20,000 is abnormal.
The solution could then alert on and block an attacker who crafts API requests that deviate from
the baseline.

API5:2019 Broken Function Level Authorization
Description
Authorization flaws are often the result of improperly implemented or misconfigured authorization.
Implementing adequate authorization mechanisms is a complex task, since modern applications can
contain many types of roles, groups, and user hierarchy such as sub-users and users with more than
one role. This is further complicated with distributed application architectures and cloud-native
design. Broken function level authorization (BFLA) shares some similarity to BOLA in this regard,
though the target with BFLA is API functions as opposed to objects that APIs interact with as in the
case of BOLA. Attackers will attempt to exploit both vulnerabilities when targeting APIs in order to
escalate privileges horizontally or vertically.

Attackers discover these flaws in APIs since API calls are structured and predictable, even in REST
designs. This can be done in the absence of API documentation or schema definitions by reverse
engineering client-side code and intercepting application traffic. Some API endpoints might also be
exposed to regular, non-privileged users making them easier for attackers to discover.

- 13 -

Attackers can exploit these flaws by sending legitimate API requests to an API endpoint that they
should not have access to or by intercepting and manipulating API requests originating from client
applications. As an example, an attacker could change an HTTP method from GET to PUT.
Alternatively, the attacker might also alter a query parameter or message body variable such as
changing the string “users” to "admins" in an API request.

Potential Impact
Attackers exploiting broken function level authorization vulnerabilities can gain access to
unauthorized resources, take over another user’s account, create/delete accounts, or escalate
privileges to gain administrative access.

Example

In the example above, the attacker has changed the method from POST. to DELETE allowing them to
delete the account associated with user_id=exampleId_100. Access to the DELETE method should
have been restricted to users with administrative access but was allowed due to an inadequate
authorization policy.

- 14 -

Real World Example
New Relic Synthetics users can escalate privileges to add or modify alerts
In 2018 Jon Bottarini found that a restricted user could make changes to alerts on Synthetics monitors
without the proper permissions to do so. In fact, they could make changes with no permissions at all
as a result of the privilege escalation weakness that was present in the product at that time.
Exploitation involved submitting a legitimate request to an API endpoint that was otherwise not
visible to the restricted user.

As part of his security research, Jon captured traffic of a privileged session using an intercepting
proxy tool, Portswigger Burp Suite. In particular, this traffic included a POST request to an API
endpoint and function that creates alerts on Synthethics monitors. He found that you could trap a GET
request from the non-privileged session, retain the tokens and cookies for that restricted user, and
alter the remainder of the trapped request to resemble the privileged POST request. This
manipulation of API traffic to access functionality not visible in the UI (at all or to that user and their
permissions) is a common technique attackers use to exploit function level authorization weaknesses
and escalate privileges.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways lack context of API activity and therefore do
not know that the attacker in the example above should not be able to send a DELETE method. This
API call would be seen as legitimate and would pass through these security controls. WAFs and API
gateways sometimes support explicit, statically defined message filters, often referred to as a positive
security approach. However, these approaches can inhibit or break business functionality, and most
organizations find them difficult to operationalize at scale. Restricting HTTP methods is also an easier
task than restricting API parameters and values, the latter of which requires deeper subject matter
expertise on the design of the API.

The activity in the Facebook example above would be missed by WAFs and API gateways for the
same reason. These security controls would not know that the 3rd party applications should no longer
have access to the deprecated or restricted API functions. Tuning the controls would have required
appropriate knowledge transfer between development, operations, and security teams to implement
an appropriate static filter in the appropriate proxy within the overall enterprise architecture.

How to Protect Broken Function Level Authorization Vulnerabilities
API security solutions must be able to continuously baseline typical HTTP access patterns per API
endpoint and per user. With this baseline, API security solutions can identify calls with unexpected
parameters or HTTP methods sent to specific API endpoints such as in the DELETE example above. It
is critical that the solution is capable of baselining continuously, as APIs may go through a high rate of
change as a result of modern development and release practices. API security solutions must be able
to identify and prevent attackers or unauthorized users from accessing administrative level
capabilities or unauthorized functionality as in the Facebook example above.

- 15 -

API6:2019 Mass Assignment
Description
Modern application frameworks encourage developers to use functions that automatically bind input
from the client into code variables and internal objects in order to help simplify and speed up
development within the framework. Attackers can use this side effect of frameworks to their
advantage by updating or overwriting properties of sensitive objects that developers never intended
to expose. Mass assignment vulnerabilities are also sometimes referred to as autobinding or object
injection vulnerabilities.

Exploitation of mass assignment vulnerabilities in APIs requires an understanding of the application’s
business logic, objects relations, and the API structure. APIs expose their underlying implementation
along with property names by design. An attacker can also gain further understanding by reverse
engineering client-side code, reading API documentation, probing the API to guess object
properties, exploring other API endpoints, or by providing additional object properties in request
payloads to see how the API responds. APIs need to be exposed to some extent in order to enable
functionality and data exchange. As a result, attackers are able to exploit mass assignment
vulnerabilities more easily in APIs and API-based applications.

Objects in modern applications can contain many properties, some of which can be updated directly
by the client such as user first name or address details, and other sensitive properties that should not,
such as user access entitlements.

An API endpoint is vulnerable if it automatically converts client provided data into internal object
properties without considering the sensitivity and the exposure level of these properties. Binding
client provided data like JSON attribute-values pairs to data models without proper filtering of
properties based on an allowlist usually leads to mass assignment vulnerability.

Potential Impact
An attacker exploiting mass assignment vulnerabilities can update object properties that they should
not have access to allowing them to escalate privileges, tamper with data, and bypass security
mechanisms.

- 16 -

Example

In the example above, the attacker has changed the API call to update their account, escalate their
role and privileges to an “admin” role, and bypass single-sign on (SSO). If successful, the attacker can
then perform actions within the application as an administrator.

Real World Example
Hacking rails/rails repo
In 2012, a security researcher by the name of Egor Homakov found a critical mass assignment
vulnerability in GitHub’s public key form update function. This mass assignment vulnerability allowed
any user to associate their public key to a given GitHub public or private repo and take ownership of
that repo. The attack made use of one of GitHub’s public APIs to find the identifier ID for a given repo.
An attacker could then pair this identifier with their own public key and submit the data to GitHub’s
public key form update function to exploit the vulnerability.

Egor attempted to report the issue to GitHub prior to GitHub having a responsible disclosure policy.
Egor felt his report wasn’t being taken seriously or being addressed quickly enough, and so he chose

- 17 -

to exploit the vulnerability, taking ownership of the public rails repo hosted on GitHub to prove their
point. This takeover activity and resulting swarm of comments is still visible in the rails git commit
history. GitHub resolved the issue within roughly an hour after Egor’s exploit. The vulnerability was
very simple to exploit, which may have been why it was so overlooked. It was also a catalyst for
GitHub developing a responsible disclosure policy that still stands today, and which has evolved
into GitHub’s public bug bounty program.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways lack context of API activity and intended
business logic. They can’t know if the API caller in the example above should be able to send a
request using the PUT method with additional parameters, failing to differentiate between a
legitimate call and malicious activity. To these traditional controls, this API call looks normal. They lack
the context to know that this user is not an administrator, and the user should not have access to
these additional parameters. At best, a WAF or API gateway may be able to offer basic message
filtering mechanisms to block this type of request wholesale. However, additional parameters may be
necessary for other users and other use cases. It would also require detailed knowledge upfront from
development teams on the design and intended use of the API so that operational teams can
implement even basic message filters.

How to Protect Against Mass Assignment Attacks
API security solutions must be able to identify anomalous API activity where attackers send
manipulated API requests with unauthorized parameters. To do this, API security solutions must be
able to continuously baseline normal API behavior and identify when additional parameters are
passed in API calls that fall outside of typical behavior. API Security solutions should also be able to
identify attackers as they probe the API during their reconnaissance phase to gain an understanding
of the API structure and business logic.

API7:2019 Security Misconfiguration
Description
This issue is a catch-all for a wide range of security misconfigurations that often negatively impact API
security as a whole and introduce vulnerabilities inadvertently. Some examples of security
misconfigurations include insecure default configurations, incomplete or ad-hoc configurations, open
cloud storage, misconfigured HTTP headers, unnecessary HTTP methods, overly permissive Cross-
Origin resource sharing (CORS), and verbose error messages.

Potential Impact
Attackers can exploit security misconfigurations to gain knowledge of the application and API
components during their reconnaissance phase. Detailed errors such as stack trace errors can expose
sensitive user data and system details that can aid an attacker during their reconnaissance phase to
find exploitable technology including outdated or misconfigured web and application servers.

- 18 -

Attackers also exploit misconfigurations to pivot their attacks against APIs, such as in the case of an
authentication bypass resulting from misconfigured access control mechanisms.

Many automated tools are available to detect and exploit common or known misconfigurations such
as unnecessary services or legacy options, though where you detect them in the technology stack
varies greatly. Commonly used vulnerability scanners may only scan a running server for known
vulnerabilities and misconfigurations in published software, usually in the form of CVE IDs. However,
they don’t provide the complete picture, since misconfigurations can exist in underlying code, in third
party dependencies, or in integrations with other enterprise architecture. As a result, organizations
will often employ a barrage of security testing tooling in build pipelines to catch as much as possible
prior to production deployment. There are certainly cases where security misconfiguration can be the
result of something basic like a missing patch, but some misconfigurations are far stealthier and
obscured by complex architectures.

Example

- 19 -

In the example above, the attacker modified the connectionId parameter of the GET request to an
API, causing the application server to respond with a detailed exception error with stack trace
information. These errors can include information about the application environment such as software
vendor names, software packages used, software versions, and lines of code within the backend
server-side code that the error resulted. All of this information is invaluable to an attacker who is
performing reconnaissance in order to gain an understanding of infrastructure that serves the
applications and APIs as well as the application code itself in order to discover other potentially
exploitable vulnerabilities.

Real World Example
A Technical Analysis of the Capital One Cloud Misconfiguration Breach
The Capital One breach in 2019 was a chained attack, that was the result of a few issues, the primary
vector being a misconfigured WAF. Through other sources, we know that ModSecurity, an open-
source WAF, was likely used to protect certain Capital One web applications and APIs. The WAF was
not appropriately configured or tuned for Capital One’s AWS environment and was overly permissive.
As a result, an attacker was able to bypass the WAF’s content inspection and message filtering using a
well-crafted injection that targeted the backend AWS cloud metadata service. Harvesting metadata
typically only available to running workloads, the attacker was able to pivot their attack and
compromise other systems within the AWS cloud environment, commonly referred to as server-side
request forgery attack.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways are not able to identify the modification to
the connectionId parameter in the example above since it does not match a pattern of a typical
attack. These tools also lack the context to know that the modified connectionId parameter does not
match typical usage for this parameter or that it would result in an application server error, and
therefore would miss this attack. These tools would also not alert on the excessive data sent in the
API response since these traditional security controls lack context about this information to know that
it is potentially sensitive and should not be returned in error messages. It’s also not uncommon for
traditional security controls to only check client requests to APIs, or inbound traffic, and not the server
response back to the client, or outbound traffic.

How to Protect Against Security Misconfiguration Vulnerabilities
An API security solution must be able to identify misconfigurations and security gaps for a given API
and its serving infrastructure. It must suggest remediation when manipulation attempts are made, and
the application server itself is not configured to reject the request or mask sensitive data in the
response. An API security solution must be able to analyze all API activity and establish a baseline of
typical API activity so that it can help identify excessive data and sensitive data sent in error
messages. These solutions also help to identify the early activity of an attacker who is performing
reconnaissance in order to look for security misconfigurations and learn more about the API structure
and logic. Early detection defines the difference between a security incident, where you catch
attacker behavior early in their methodology and stop it, as opposed to a breach, where an attacker is
able to successfully exfiltrate data or compromise systems.

- 20 -

API8:2019 Injection
Description
Injection flaws are very common in the web application space, and they carry over to web APIs.
Structured Query Language (SQL) injection is one of the most well-known, but there are other
injection varieties that can impact a range of interpreters and parsers beyond just SQL including,
Lightweight Directory Access Protocol (LDAP), NoSQL, operating system (OS) commands, Extensible
Markup Language (XML), and Object-Relational Mapping (ORM).

Attackers exploit these injection vulnerabilities by sending malicious data to an API that is in turn
processed by an interpreter or parsed by the application server and passed to some integrated
service, such as a database management system (DBMS) or a database-as-a-service (DBaaS) in the
case of SQL injection (SQLi). The interpreter or parser is essentially tricked into executing the
unintended commands since they either lack the filtering directly or expect it to be filtered by other
server-side code.

Potential Impact
Injection can lead to a wide range of impacts including information disclosure, data loss, denial of
service (DoS), or complete host takeover. In many cases, successful injection attacks expose large
sets of unauthorized sensitive data. Attackers may also be able to create new functionality, perform
remote code execution, or bypass authentication and authorization mechanisms altogether.

Example

- 21 -

In the example above the attacker appends the userId and sends additional syntax which will be
parsed by the SQL query interpreter. This could cause the database to return all rows in the table
as opposed to just the row that matches the user’s ID. That is because the SQL interpreter will
evaluate both portions of the submitted SQL query. The application logic was built with the
expectation that the user will provide their legitimate userId, which is then passed to the database
service for a lookup in the backend database table or view defined in the server-side code.
Normally, the SQL database engine will look for a row with the identifier that matches that of
the userId provided by the client.

In this case, the attacker provided two components of a query through the front end web API,
terminating the first part of the query with the use of a “ ‘ “ character. One query value is
a userId, which need not even be valid. They also provided a query value that will result in a
comparison of two numerical values. The value of 1 is of course equal to 1, which the SQL engine
will evaluate as TRUE. Since the complete query string contains the OR operator, either
component of the query that evaluates as TRUE will return TRUE for the final executed query. As a
result, all table rows will match this SQL query string. The database service will return all rows in
the table, and the data will be passed through the web API back to the attacker.

Why Existing Tools Fail to Protect You
Protecting from injection attacks is common functionality for WAFs and some API gateways since
these tools can use signatures to pattern match and identify known injection types. The signatures
that these tools use, however, need to be kept up to date in order to protect against the latest
injection attacks. If these tools lack the latest signature updates, they will miss new attack types.
Unfortunately, signatures are often built for off the shelf web and application software packages
including open-source projects like Drupal and Wordpress. Software vendors and open-source
web content management system (CMS) project owners will call out pitfalls of WAF signatures for
covering the range of custom development or plugins in their respective ecosystems. Web CMS
also serve as development platforms. Custom code that development teams build within each
respective ecosystem can look wildly different than what a WAF’s out of the box signatures are
built for.

This is typically where WAF tuning discussions begin, or end, depending on your perspective. It
can be difficult for many security teams to keep up with the rate of change of web pages, mobile
apps and web APIs. The internet is also riddled with WAF evasion techniques that help attackers
avoid WAF pattern matching mechanisms, commonly regex or libinjection. The situation gets
worse for API gateways, which don’t receive signature updates regularly if at all. API gateways
often employ basic threat protection or message filters that look for known malicious characters in
requests and responses, such as “= “ or “ ‘ “ in the case of SQLi. This type of approach is often too
basic for organizations since it catches only basic injection attacks and may break other system
integrations.

Another consideration is that WAFs focus on all web traffic, of which API traffic is only a subset and
tangential focus. This may result in WAFs only being deployed with a positive security model to
enforce traffic against an API schema or specific HTTP traffic patterns. Rulesets such as injection
protections may also not be applied to API traffic.

- 22 -

How to Protect Against Injection Attacks
An API security solution must be able to identify attackers probing APIs with potentially malicious data
through all vectors. Injection flaws can be exploited in many parts of a request, including headers,
cookies, URL query parameters, and message body variables depending how other backend
application components and systems are architected. Detecting injection flaws successfully and early
requires that the solution analyze all API traffic and establish a baseline of typical API behavior. From
the baseline, the solution can identify anomalous and potentially malicious data in an API request
such as what is seen in injection attacks. This can be done without the need for signatures or pattern
matching, which eliminates the need to maintain configurations and signatures while ensuring that
even injection attempts using the latest methods are identified and stopped.

API9:2019 Improper Assets Management

Description
Maintaining a complete, up to date API inventory with accurate documentation is critical to
understanding potential exposure and risk. An outdated or incomplete inventory results in unknown
gaps in the API attack surface and makes it difficult to identify older versions of APIs that should be
decommissioned. Similarly, inaccurate documentation results in risk such as unknown exposure of
sensitive data and also makes it difficult to identify vulnerabilities that need to be remediated.

Unknown APIs, referred to as shadow APIs, and forgotten APIs, referred to as zombie APIs, are
typically not monitored or protected by security tools. Even known API endpoints may have unknown
or undocumented functionality, referred to as shadow parameters. As a result, these APIs and the
infrastructure that serve them are often unpatched and vulnerable to attacks.

Potential Impact
Attackers may gain unauthorized access to sensitive data, or even gain full server access through old,
unpatched or vulnerable versions of APIs.

Example
Research conducted by Salt Security shows a common gap of up to 40% between manually created
API documentation (or schema definitions) in the form of Open API Specification (OAS) vs. what is
actually deployed in production APIs. These gaps fall into the following three categories:

1. Shadow API Endpoints – API endpoints that are missing from the OAS or have no OAS at all. In
the following example, Salt Security research found an additional 54 endpoints that were not
included in the Swager or OAS documentation, and 12 of those undocumented endpoints
were exposing sensitive PII data.

- 23 -

2. Shadow Parameters – API endpoints known to exist but whose API documentation is missing
many parameters. As a result, the API documentation does not cover the majority of the attack
surface – in this research, API schema definitions listed just three parameters, but the Salt
Security platform identified 102 parameters for the single API endpoint.

Parameter Definition Discrepancies – in addition to many missing parameters, data types that lack
needed details such as “String” instead of “UUID” or “DateTime” will leave APIs vulnerable. Message
filters used by traditional security controls will allow any input through the API to be processed by the
backend. These controls rely on a positive security approach and explicitly written rules and policies
when enforcing requests against API schema definitions.

- 24 -

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways lack capabilities to continuously discover
APIs at a granular level and monitor them for changes. These security controls only know what they
are configured for, requiring API schema definitions to be imported in order to gain a view of the API
environment. If documentation is missing or inaccurate, as is often the case for many security teams,
these traditional security controls will have an inaccurate view of the API environment.

How to Protect Against Improper Asset Management Vulnerabilities
API security solutions must be able to analyze all API traffic and continuously discover APIs. Discovery
must include the ability to identify all host addresses, API endpoints, HTTP methods, API parameters,
and their data types including the identification and classification of sensitive data. These solutions
must provide discovery on an ongoing basis to maintain an up-to-date catalog of the API
environment and accurate API documentation even as new APIs are introduced and updates are
made to existing APIs.

- 25 -

API10:2019 Insufficient Logging & Monitoring
Description
Insufficient logging and monitoring combined with missing or ineffective integration with incident
response, allows attackers to perform reconnaissance, exploit or abuse APIs, compromise systems,
maintain persistence, advance attacks, and move laterally across environments without being
detected. The longer an attacker is present in an environment the higher the likelihood the attack will
result in a breach, brand or reputation damage, or some other negative impact to the company or its
service.

Potential Impact
Without visibility over ongoing malicious activities, attackers have plenty of time to perform
reconnaissance, pivot to more systems, and tamper with, extract or, destroy data.

Why Existing Tools Fail to Protect You
Traditional security controls like WAFs and API gateways provide limited logging, monitoring, alerting
and incident response capabilities. These security controls alert based on every anomaly without the
ability to decipher between benign and malicious abnormal behavior. This results in an
overwhelming number of alerts that can be seen as “noise” by SOC and incident response teams,
lead to SecOps fatigue and result in the organization missing high priority security incidents that turn
into breaches.

How to Protect Against Insufficient Logging & Monitoring
API security solutions must be able to monitor and analyze all API activity and provide proper logging
and incident response capabilities, such as feeding actionable security events into the organization’s
security information and event management (SIEM). By analyzing all API activity, an API security
solution can differentiate between benign and malicious abnormal behavior, reducing false positives
and low priority alerts. These solutions must also correlate event data to provide a consolidated view
of attacker activity, consolidated alerts, and detailed attacker timelines to help accelerate incident
response and forensic investigations.

26
Request a demo today!
info@salt.security
www.salt.security

Salt Security protects the APIs that are at the core of every modern application. The

company's API Protection Platform is the industry’s first patented solution to prevent

the next generation of API attacks, using behavioral protection. Deployed in minutes,

the AI-powered solution automatically and continuously discovers and learns the

WP-OWASP-20210527

Conclusion: Protecting APIs from the OWASP API
Security Top 10 Threats
Protecting APIs from the threats outlined in the OWASP API Security Top 10 requires a new approach
to security. Traditional methods of protecting web applications with only authentication,
authorization, and encryption are not enough, and traditional tools including API gateways and WAFs
do little to stop the top threats targeting APIs. Likewise, not all elements of API security can be
addressed in code, let alone tested for and validated pre-deployment – many aspects of how
attackers abuse APIs reveal themselves only in runtime.

The Salt Security API Protection Platform secures the APIs at the heart of all modern applications. The
platform collects API traffic across the entire application landscape and makes use of big data, AI, and
ML to discover all APIs and their exposed data, stop attacks and eliminate vulnerabilities at their
source. The Salt solution enables organizations to:

• Discover all APIs and exposed data.
The Salt platform automatically inventories all APIs, including shadow and zombie APIs, across
all application environments. Salt also highlights all instances where APIs expose sensitive data
like Personally Identifiable Information (PII). Continuous discovery ensures APIs stay protected
even as environments evolve and change as a result of agile methodologies and DevOps
practices.

• Stop API attackers.
Pinpoint and stop threats to APIs with Salt's big data and patented artificial intelligence (AI)
technology that baselines legitimate behavior and identifies attackers in real time, during
reconnaissance, to prevent them from advancing. The platform correlates all activities back to
a single entity, sends a single consolidated alert to avoid alert fatigue, and blocks the attacker
– not just transactions.

• Improve API security posture.
The Salt platform proactively identifies vulnerabilities in APIs even before they serve
production traffic. The platform uses attackers like pen testers, capturing their minor successes
to provide insights for dev teams while stopping attackers before they reach their objective.

WP-OWASP-20210510

